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Motivation

I From stochastic channel models to more realistic, site aware
models

I Software defined channel emulation

I Hardware in the Loop testing
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Workflow Overview
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Ray optical path simulation
What is PIROPA?

PIROPA is a non-interactive C++ command line program, a
Demonstration GUI facilitates the usage.

Input

I Vector based environment data,

I a transmitter location t, andTo

I receiver locations ri

Output

I Sets of paths {p|p is a path from t to ri}, where

I the path p is a sequence (t, c1, c2, . . . , cn−1, ri ) and

I t, ri , ci ∈ R3 are locations in the environment space.
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Ray optical path simulation
Environment data

I Environment data is vector based 2.5D building data
I All walls are upright and roofs are flat
I Data is available from governmental, commercial and

non-commercial sources (e.g. OSM)
I Dealing with the data quality, or lack of quality, is a challenge
I There is no unified standard format for such data
I A preprocessing tool creates a custom input format for

PIROPA
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Ray optical path simulation
From path to color image

Basic Path loss model

LdB(p) = LdB0 (p) +
∑
e∈E

ne(p)∑
i=1

LdBe (α)

LdB0 (p) = 20 lg
4π

λt
− 10 lgGt(φ(r), ψ(r)) + zA + 10γ lg d(r)

I λt signal wavelength

I Gt(φ(r), ψ(r)) antenna gain in the given direction

I zA calibration coefficient

I γ path loss exponent

I d(r) the passed distance of the path
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Ray optical path simulation
From path to color image

Basic Path loss model

LdB(p) = LdB0 (p) +
∑
e∈E

ne(p)∑
i=1

LdBe (α)

I E = {Reflection,Vertical diffraction,Horizontal diffraction}

I ne(p) The number of occurrences of an effect e ∈ E
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Ray optical path simulation
From path to color image

Basic Path loss model

LdB(p) = LdB0 (p) +
∑
e∈E

ne(p)∑
i=1

LdBe (α)

LdBe (α) =
k∑

j=0

ze,jα
j
e,i (p)

I αj
e,i (p) is the angular change at a certain position

I ze,j calibration coefficients for effects
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Ray optical path simulation
Abstract Algorithm

PIROPA Algorithm

1. Shoot rays from the transmitter location into the scene

2. Intersect the rays with the building surfaces

3. Test the found intersection points for occurrences of physical
effects

4. Insert a virtual transmitter according to the effect parameter

5. Start over until termination condition is met
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Ray optical path simulation
Simulation Performance

I Many Tweaks to increase performance

I Large environment data is partitioned to
increase performance on the intersection
test and improve memory handling. This
is completely transparent to the
simulation.

I The typical building structure allows for
some assumptions which leads to a faster
calculations. A two times 2D calculation
instead of a full 3D calculation is
performed.

I OpenCL to employ a multitude of
heterogeneous computing hardware
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Ray optical path simulation
Output data

I The output data is a text file or an image representation
I In the image, every pixel is a receiver and the attenuation is

displayed by the color
I The text format contains the complete set of information of

all paths for a given receiver location
I extract channel (emulation) data with a conversion tool

1. AoD, AoA, distance, attenuation...

2. AoD, AoA, distance, attenuation...

3. AoD, AoA, distance, attenuation...
4. AoD, AoA, distance, attenuation...
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Channel Emulator
Equivalent Baseband Conversion

I RWP Simulation outputs discrete ”impulse response”/power
delay profile (after conversion)

I Pulses not on a uniform sampling grid

I Equivalent baseband conversion is necessary to obtain filter
coefficients

I We use an FFT filter design method for the interpolation
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Channel Emulator
Equivalent Baseband Conversion

h(t) =
∑
m

αmδ(t − τmTs) τm ∈ R

H(f ) =
∑
m

αme
−j2πf τmTs

Hk =
∑
m

αme
−j2πkfsτmTs fs =

1

NTs

=
∑
m

αme
−j2π k

N
τm

hn =
N−1∑
k=0

Hke
j2π k

N
n

...

=
∑
m

αme
−j π

N
(n+(N−1)τm) sin(πτm)

sin( πN (τm − n)
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Channel Emulator
Software

I Speed of receiver movement defines channel coherence time
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Channel Emulator
Hardware Testing Configuration

I some testing
I problems with coupling of signals, we used different

frequencies for input and output
I problems with additional filtering effect of USRP1, halfband

filters etc.

I USRP2 works much better

Tx

Channel Emulator

Rx
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MIMO system model

Tx Rx

y(t)

S

x(t)

... ...U

H(t, τ)

Received signal:

y(t) =

∫
τ
H(t; τ)x(t − τ)dτ + w(t)

with

H(t; τ) =


h1,1(t; τ) h1,2(t; τ) . . . h1,S(t; τ)
h2,1(t; τ) h2,2(t; τ) . . . h2,S(t; τ)

...
...

. . . . . .
hU,1(t; τ) hU,2(t; τ) . . . hU,S(t; τ)
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Geometry-based stochastic channel model

Clusterized MIMO channel:

BS MS

σψσφ

τ2

τ1
�v

φ2

φ1

ψ1

ψ2

Double directional radio channel:

hu,s(t; τ) =

∫
φ

∫
ψ
gu,s(t, τ, φ, ψ) ·√

GTx,s(φ)
√

GRx,u(ψ)dφdψ

Theoretical Information Technology, J. Schmitz, X. Xu, F. Schröder, M. Zivkovic, R. Mathar 15



Output of deterministic step

From Ray-Tracing algorithm:

Parameters Description

n, N Path index, total number of paths (clusters)
Gn Per path gain ∈ [0, 1)
dn Propagation distance
φn, ψn Path AoD and AoA

Normalized power:

Pn =
Gn∑N
n=1 Gn

Delay:
τn = dn/c
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Generation of clusters

I The N Propagation paths from ray launching algorithm are
regarded as representatives of clusters for MIMO channel
model

I Generate M rays for each cluster

Parameters Description

m,M Ray index, number of rays per cluster
cAoA Cluster-wise RMS azimuth spread
αm Ray offset angles
~kTx,n,m, ~kRx,n,m Ray direction vectors
Φn,m Random initial phase ∈ [0, 2π)
~dTx,s , ~dRx,u Antenna element position vectors
v , θ Speed and direction of mobile station

Angle of arrival:
ψn,m = ψn + cAoAαm
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Channel coefficients

Channel coefficients based on clusters:

hu,s(t, τ) =

√
Pn

M

N∑
n=1

M∑
m=1

√
GTx,s(φn,m)

√
GRx,u(ψn,m)

exp

(


[
2π

λ
~kTx,n,m · ~dTx,s + Φn,m

])
exp

(


2π

λ
~kRx,n,m · ~dRx,u

)
exp

(


2π

λ
vn,mt

)
δ(τ − τn,m)

Doppler frequency component:

vn,m = ‖v‖ cos(ψn,m − θ)
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Conclusion

I Next: Implement MIMO model into Channel Emulator

I Extensive Testing with 2x2 MIMO OFDM

I Take effects of the hardware into account
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Finish

Thank You! Questions?
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